Abstract
Evidence for the participation of opioid neuropeptides in immunoregulatory activities, especially cellular adherence and migration, has been obtained in representatives of two phyla of invertebrates, the mollusc Mytilus edulis and the insect Leucophaea maderae. The injection of a synthetic analog of [Met]enkephalin [( D-Ala2,Met5]enkephalinamide, DAMA; 10(-6) M) had a stimulatory, naloxone-reversible effect on the directed migration of immunocompetent hemocytes. Incubation of hemolymph in the presence of exogenous or endogenous opioid material significantly enhanced the adherence of hemocytes on albumin-coated slides as demonstrated by use of indirect Zeiss-Zonax reflectance computer analysis. Conversely, hemocyte adherence was markedly reduced by the addition of naloxone (10(-8) M) to the incubation medium, either alone or in combination with DAMA. The antagonistic effects of naloxone on the stimulatory activities of opioids indicate that, like those previously reported in mammals, they are receptor-mediated. The presence of an endogenous [Met]enkephalin-like material was demonstrated in cell-free hemolymph as well as sequestered hemocytes by use of high-pressure liquid chromatography and radioimmunoassay. These results demonstrate that the capacity of immunocytes to release and respond to opioid neuropeptide messengers is not restricted to mammalian organisms but was developed early in the course of evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.