Abstract

Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in both abscisic acid (ABA) signaling and stress-induced ABA accumulation. However, little is known about their physiological roles in the whole plant. In this study, the effects of NO and ROS on leaf water control and the roles of ABA were determined using wheat (Triticum aestivum L.) seedlings. As compared with the control, osmotic stress reduced leaf water loss (LWL) while it increased leaf ABA content. The effects of osmotic stress on LWL and ABA contents were partially reversed by NO scavengers or NO synthase (NOS) inhibitors. Furthermore, sodium nitroprusside (SNP) at concentrations between 0.01 and 10 mM all reduced LWL efficiently and induced ABA accumulation in a dose-dependent manner. When ABA synthesis was inhibited by fluridone or actidione, the effects of SNP on LWL were partially reversed. These results suggest that NO is involved in leaf water maintenance of wheat seedlings under osmotic stress, and one of the possible mechanisms is by stimulating ABA synthesis. The ROS scavengers used in our experiments had no effects on either LWL or ABA accumulation induced by osmotic stress. However, all ROS induced LWL reduction and ABA accumulation significantly. Hydrogen peroxide had the same effects as SNP on LWL and induced ABA accumulation in a dose-dependent manner but had a maximal effect at 1 mM. Fluridone reversed the effects of H2O2 on both LWL reduction and ABA accumulation, while actidione had no effect. These results suggest that ROS are also involved in leaf water maintenance of wheat seedlings by stimulating ABA biosynthesis, but with a different mechanism to that of NO. The ABA-independent mechanism in NO/ROS regulation of leaf water balance is discussed, in relation to our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call