Abstract

Abstract— We review the meteoritical and astronomical literature to answer the question: What is the evidence for the importance of ordinary chondritic material to the composition of the asteroid belt?From the meteoritical literature, we find that currently (1) our meteorite collections sample at least 135 different asteroids; (2) out of 25+ chondritic meteorite parent bodies, 3 are (by definition) ordinary chondritic; (3) out of 14 chondritic grouplets and unique chondrites, 11 are affiliated with a carbonaceous group/clan of chondrites; (4) out of 24 differentiated groups of meteorites, only the HE iron meteorites clearly formed from ordinary chondritic precursor material; (5) out of 12 differentiated grouplets and unique differentiated meteorites, 8 seem to have had carbonaceous chondritic precursors; (6) a high frequency of carbonaceous clasts in ordinary chondritic breccias suggests that ordinary chondrites have been embedded in a swarm of carbonaceous material. The rare occurrence (only one example) of ordinary chondritic clasts in carbonaceous chondritic breccias indicates that ordinary chondritic material has not been widespread in the asteroid belt; (7) cosmic spherules, micrometeorites, and stratospheric interplanetary dust particles—believed to represent a less biased sampling of asteroidal material—show that only a very small fraction (less than ∼1%) of asteroidal dust has an ordinary chondritic composition. From the astronomical literature, we find that currently (8) spectroscopic surveys of the main asteroid belt are finding more and more nonordinary chondritic primitive material in the inner main belt; (9) the increase in spectroscopic data has increased the inferred mineralogical diversity of main belt asteroids; and (10) no ordinary chondritic asteroids have been directly observed in the main belt.These lines of evidence strongly suggest a scenario in which ordinary chondritic asteroids were never abundant in the main belt. The S‐type asteroids may currently be primarily differentiated, but the precursor material is more likely to have been carbonaceous chondritic, not ordinary chondritic. Historically, carbonaceous material could have dominated the entire main belt. This could explain the presence in the inner main belt of asteroids linked to the primitive carbonaceous chondrites, and the absence of asteroids linked to the ordinary chondrites. The implications of this scenario for the asteroid heating mechanism(s) are briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call