Abstract

The prevalent view of the high-temperature superconducting cuprates is that their essential low-energy physics is captured by local Coulomb interactions. However, this view been challenged recently by studies indicating the importance of longer-range components. Motivated by this, we demonstrate the importance of these components by examining the electron-phonon (e-ph) interaction with acoustic phonons in connection with the recently discovered renormalization in the near-nodal low-energy (~8-15 meV) dispersion of Bi(2)Sr(2)CaCu(2)O(8+δ). By studying its nontrivial momentum and doping dependence we conclude a predominance of forward scattering arising from the direct interplay between the e-ph and extended Coulomb interactions. Our results thus demonstrate how the low-energy renormalization can provide a pathway to new insights into how these interactions interplay with one another and influence pairing and dynamics in the cuprates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call