Abstract

Polycyclic aromatic hydrocarbons (PAHs) are traditionally considered to enter the Arctic Ocean through long-range transport. Arctic warming, especially sea ice retreat, will certainly increase the contribution from local source (such as river input and ice melting). However, this hypothesis remains poorly constrained for lack of quantitative evidence. Here PAHs in surface seawater (67°N-89°N, 152°E-177°E) and sea ice (82°N-89°N) were collected in the western Arctic in 2010. Dissolved concentrations of 15 PAHs (Σ15PAHs) in surface layer ice (26.2 to 49.8 ng/L) were one order of magnitude higher than the underlying seawater. The content of dissolved Σ15PAHs was significantly higher in the marginal ice zone than those in the Chukchi Sea shelf, and the dissolved Σ15PAHs concentration differed by nearly an order of magnitude in two closely adjacent sections in the basin area, which both showed high fraction of river water and sea ice meltwater. This pattern could be explained by the different local inputs from Eurasia and North America. This scenario was further visualized by ice back trajectories capturing significantly higher PAH signals from the Eurasian margin than those from North America and stable oxygen isotopic data finding a positive correlation of PAH levels with the fractions of river runoff and ice-melting water coming from the Eurasia. The PAHs budget of the Arctic Ocean was also dominated by local sources (river and ice melting) as inputs (76 %) and volatilization as outputs (47 %). This study reveals the importance of Eurasian local inputs in supplying PAHs to the central Arctic Ocean. Those processes, which have not been well recognized for PAHs previously, are expected to increase and will undermine global efforts to reduce exposure by remobilizing PAHs stored in permafrost and ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.