Abstract

The hard X-ray (HXR) emission from solar flares is observed primarily from the footpoints of flare magnetic loops, where nonthermal electrons are understood to emit thick-target bremsstrahlung as they stream from the fully ionized hot corona to the denser, cooler, and partially ionized chromosphere. The change in the plasma ionization along the path of the electrons should result in a characteristic upward break and corresponding flattening of the X-ray spectrum with increasing energy at lower energies, and a downward break at higher energies. Due to the presence of thermal emission, the upward break usually cannot be observed. We report the first evidence for both breaks in spectra measured with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) during the GOES X1.2 class flare that happened on 2002 October 31. The RHESSI X-ray spectral analysis shows both the breakup at similar to 49 keV and the breakdown at similar to 134 keV at the HXR peak time. The time evolution of both breaks also agrees with the nonuniform ionization (NUI) model. Other possible explanations for the breaks are considered, but the NUI model provides the simplest explanation for the spectral shape and its time evolution. We find that the average column density of the fully ionized plasma changed from 2 x 10(19) cm(-2) in the rise phase to 7 x 10(21) cm(-2) after the peak. This indicates that plasma in the target was heated and became ionized during the flare, in agreement with heating by the nonthermal electrons and chromospheric evaporation expected in the collisional thick-target model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.