Abstract

Vitamin C is mainly transported across the inner blood–retinal barrier (inner BRB) as dehydroascorbic acid (DHA) via a facilitative glucose transporter (GLUT) 1, and accumulates as ascorbic acid (AA) in the retina. Müller cells, huge glial cells, exhibit passive structural and metabolic functions for retinal neurons and the inner BRB. We characterized DHA transport and its corresponding transporter in a rat Müller cell line (TR-MUL5 cells). [14C]DHA uptake by TR-MUL5 cells took place in a time-dependent and Na+-independent manner. [14C]DHA uptake was inhibited by substrates and inhibitors of GLUTs, suggesting that Müller cells take up DHA via GLUTs. HPLC analysis revealed that most of the DHA taken up by TR-MUL5 cells was converted to AA and accumulated as AA in TR-MUL5 cells. [14C]DHA uptake by TR-MUL5 cells took place in a concentration-dependent manner with a Michaelis–Menten constant of 198 μM and was inhibited by cytochalasin B in a concentration-dependent manner with a 50% inhibition concentration of 0.283 μM. Although GLUT1, 3, and 4 mRNA are expressed in TR-MUL5 cells, quantitative real-time PCR revealed that GLUT1 mRNA expression was 5.85- and 116-fold greater than that of GLUT3 and 4, respectively. Western blot analysis supports the expression of GLUT1 protein with 45 kDa in TR-MUL5 cells. In conclusion, DHA is taken up by facilitative glucose transporters, most likely GLUT1, and converted to AA in TR-MUL5 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.