Abstract

Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been performed with normal-hearing subjects. The dependence of fine-structure patterns on the frequency ratio f2/f1 was investigated by changing f1 or f2 only (fixed f2 or fixed f1 paradigm, respectively), and by changing both primaries at a fixed ratio and looking at different order DPOAE. When f2/f1 is varied in the fixed ratio paradigm, the patterns of 2 f1-f2 fine structure vary considerably more if plotted as a function of f2 than as a function of fDP. Different order distortion products located at the same characteristic place on the basilar membrane (BM) show similar patterns for both, the fixed-f2 and fDP paradigms. Fluctuations in DPOAE level up to 20 dB can be observed. In contrast, the results from a fixed-fDP paradigm do not show any fine structure but only an overall dependence of DP level on the frequency ratio, with a maximum for 2f1-f2 at f2/f1 close to 1.2. Similar stimulus configurations used in the experiments have also been used for computer simulations of DPOAE in a nonlinear and active model of the cochlea. Experimental results and model simulations give strong evidence for a two-source model of DPOAE generation: The first source is the initial nonlinear interaction of the primaries close to the f2 place. The second source is caused by coherent reflection from a re-emission site at the characteristic place of the distortion product frequency. The spectral fine structure of DPOAE observed in the ear canal reflects the interaction of both these sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call