Abstract

Mass-spectrometric measurements of 16O2 and 18O2 were made to compare the rates of light-dependent O2 evolution and uptake by Chlamydomonas reinhardtii Dang. grown in air (0.035% CO2; low-Ci cells) or CO2-enriched air (5% CO2; high-Ci cells) at pH 5.5 and 8.0. While at pH 5.5, no differences were observed in the isotopic O2-gas exchange of high- and low-Ci cells, at pH 8.0 the rates of true O2 evolution and uptake were considerably higher in low-Ci than in high-Ci cells. The enhanced rates of O2 uptake and evolution by low-Ci cells were completely inducible within 6 h after transferring high-Ci cells to ambient air. At pH 8.0, O2 uptake in the light was inhibited by 2 μM 3-(3,4-dichlorophenyl)-1,1 dimethylurea in both types of alga, but this effect was more pronounced in low-Ci than in high-Ci cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.