Abstract

Efforts have been made to counteract the symptoms of Parkinson's disease by substituting the loss of dopaminergic neurons with fetal ventral mesencephalic grafts. One of the postulated limiting factors in this treatment is the relatively poor cell survival and limited graft-derived fiber outgrowth. Recent results documenting enhanced survival of grafted dopaminergic neurons showed no positive correlation to enhanced innervation of the striatal target. Therefore this study was undertaken to investigate whether all surviving grafted dopaminergic neurons projected to the striatal target. Hence, fetal ventral mesencephalic tissue was implanted adjacent to mature versus immature striatal tissue using in oculo and intraventricular grafting techniques. In in oculo grafting, fetal ventral mesencephalon was implanted simultaneously with fetal lateral ganglionic eminence (immature striatal target) or to already matured striatal in oculo grafts (mature striatal target). Furthermore, fetal ventral mesencephalon was implanted into the lateral ventricle adjacent to mature dopamine-depleted striatum. The retrograde tracer fluorogold was injected into the striatal portion of the in oculo cografts and into reinnervated areas of the adult brain. Immunohistochemistry revealed that a significantly larger proportion of tyrosine hydroxylase-positive neurons in the ventral mesencephalic graft was innervating in oculo immature striatal tissue, and hence was fluorogold-positive, in comparison with the number of tyrosine hydroxylase-positive neurons innervating mature striatal tissue. Moreover, intracranial transplantations showed that tyrosine hydroxylase-positive neurons were distributed within the grafts in dense clusters of cells. In most clusters tyrosine hydroxylase-positive cells were fluorogold-negative but calbindin-positive. In a few tyrosine hydroxylase-positive cell clusters, neurons were coexpressing fluorogold but were calbindin-negative. In conclusion, significantly more dopamine neurons projected to immature than to mature striatal tissue and thus, a subpopulation of grafted dopaminergic neurons was not projecting into adult striatum. Thus, the results from this study show that further attempts to enhance survival of grafted dopamine neurons in purpose to enhance graft-derived fiber outgrowth and efficacy should also consider different subtypes of dopamine neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call