Abstract

AbstractPhase alignment (synchronization) is a generalized property of interacting oscillators. If such interactions apply to earthquakes, they should manifest as time‐dependent variations in earthquake productivity organized according to a characteristic elastic loading period. Defining this period as renewal interval, the time required to accumulate the elastic potential energy released in a rupture, gives a consistent scaling property that can be used to search for temporal organization. We test for the expected structure in earthquake productivity using three different statistical tools optimized for different temporal sensitivities: Schuster spectra for events with short renewal intervals (0–25 years), Fourier power spectra for events with short and intermediate renewal intervals (0–100 years), and topological data analysis (TDA) for events with long renewal intervals (>100 years). All three indicate that earthquakes are organized in time according to renewal interval. Accounting for such unsteady temporal organization may improve forecasting skill by providing time‐dependent event probabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.