Abstract

The hypotheses of the study were that congenital hearing impairment in infants can result from the isolated loss of inner hair cells of the cochlea and that this is shown by the presence of abnormal positive summating potentials on round window electrocochleography. The objectives were to establish the proportion of infants with hearing loss affected, the nature of the cochlear lesion, and its etiology. And to highlight the important implications for otoacoustic emissions testing and universal neonatal screening. A prospectively conducted consecutive cohort study with supplemental review of notes was performed. Four hundred sixty-four children underwent round window electrocochleography and auditory brainstem response testing under general anesthesia to assess suspected hearing loss. The presence of abnormal positive potentials was recorded. Otoacoustic emissions data were collected separately and retrospectively. Three hundred forty-two children had significant bilateral congenital hearing loss. All results were from hearing-impaired children. Abnormal positive potentials were recorded in 73 of 342 children (21%). Eighty-three percent of children with otoacoustic emissions also had abnormal positive potentials, but only 14% of children without otoacoustic emissions had abnormal positive potentials (P <.001). In the neonatal intensive care unit setting, 43% of infants were found to have abnormal positive potentials, whereas only 10% had abnormal positive potentials if not in the neonatal intensive care unit setting (P <.001). Abnormal positive potentials were present in 63% of infants born before 30 weeks gestation and in 14% of infants born at term (P <.001). Abnormal positive potentials were identified in 57% of infants with documented hypoxia and 11% of children with no episodes (P <.001). Otoacoustic emissions were present in 48% of infants from the neonatal intensive care unit, despite their hearing loss. Both otoacoustic emissions and abnormal positive potentials may originate from outer hair cell activity following inner hair cell loss. This may occur in more than 40% of hearing-impaired children in the neonatal intensive care unit setting. Chronic hypoxia is the most likely cause. Otoacoustic emissions testing may not be a suitable screening tool for such infants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.