Abstract

White clover (Trifolium repens L.) callus tissue cultures accumulated the phytoalexin medicarpin after treatment with sulfhydryl reagents. After 24-hour exposures to sulfhydryl reagents, maximum obtainable levels of medicarpin, determined by high performance liquid chromatography analysis, were found with 50 millimolar N-ethyl maleimide, 25 millimolar HgCl(2), 2 millimolar p-chloromercuribenzoic acid, and 0.5 millimolar iodoacetamide. Increased medicarpin levels were also observed in callus treated with p-chloromercuribenzene sulfonic acid, but the highest concentration tested (11.8 millimolar) did not produce the maximum response. After sulfhydryl treatment, medicarpin levels were unchanged for 4 to 6 hours, but steadily increased thereafter with maximum accumulation occurring by 48 to 50 hours for p-chloromercuribenzoic acid, p-chloromercuribenzene sulfonic acid, and HgCl(2) treated callus. Medicarpin levels did not increase in iodoacetamide-treated callus until 8 hours after sulfhydryl exposure, and medicarpin levels were still increasing linearly after 50 hours. Three other metabolic inhibitors, KCN, NaF, and Na(3)AsO(4), did not exhibit elicitor activity, indicating cell death was not a factor in the response. Pretreatment of callus with 20 millimolar dithiothreitol followed by 40 millimolar N-ethyl maleimide did not produce the phytoalexin response. Preincubation with dithiothreitol also prevented elicitor activity of HgCl(2) and p-chloromercuribenzene sulfonic acid. These results suggested that dithiothreitol pretreatment somehow prevented sulfhydryl groups within the cell from reacting with the test compounds. These experiments established that the integrity of sulfhydryl groups is important in regulating phytoalexin accumulation in callus cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.