Abstract

Primordial germ cells (PGCs) have been removed from their normal migratory route in early embryos of Xenopus laevis, and their behaviour studied in vitro. They adhere to, and move over the upper surface of, layers of outgrowing cells from expiants of adult Xenopus mesentery. They move by the extrusion of single filopodia, elongation, forward streaming of the yolky cytoplasm and retraction of their trailing ends. When the underlying cells are polarized in one direction only, PGCs always elongate and move along the same direction. Furthermore, when PGCs elongate and move over less obviously polarized cells, they always do so in the direction of ‘stress fibres’ (actin bundles) in the underlying cells. A substrate-guidance hypothesis for PGC migration is only tenable if there is some orientation in their natural substrate in vivo. Using the scanning electron microscope, we demonstrate that the coelpmic lining cells, beneath which PGCs migrate up the dorsal mesentery of the gut, are orientated in the direction of travel. Furthermore, this orientation changes at the time of gonadal ridge formation. This raises the intriguing possibility that PGCs are guided for at least part of their migration in Xenopus laevis embryos by a substrate-guidance mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.