Abstract

The LIGO--Virgo--KAGRA collaborations (LVK) produced a catalogue containing gravitational-wave (GW) observations from the first half of the third GW observing run (O3a). This catalogue, GWTC-2.1, includes for the first time a number of \emph{exceptional} GW candidates produced from merging black-hole-binaries with unequivocally unequal component masses. Since subdominant multipole moments and spin-induced orbital precession are more likely to leave measurable imprints on the emitted GW from unequal component mass binaries, these general relativistic phenomena may now be measurable. Indeed, both GW190412 and GW190814 have already shown conclusive evidence for subdominant multipole moments. This provides valuable insights into the dynamics of the binary. We calculate the evidence for subdominant multipole moments and spin-induced orbital precession for all merging black-hole-binaries in GWTC-2.1 that were observed during O3a and show that (a) no gravitational-wave candidate has measurable higher order multipole content beyond $\ell = 3$, (b) in addition to the confident subdominant multipole measurements in GW190412 and GW190814, GW190519\_153544 and GW190929\_012149 show marginal evidence for the $(\ell, |m|) = (3, 3)$ subdominant multipole, (c) GW190521 may have measurable subdominant multipole content and (d) GW190412 may show evidence for spin-induced orbital precession.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.