Abstract

Chickens (Gallus gallus domesticus) and Japanese quail (Coturnix japonica), two closely related gallinaceous bird species, exhibit a form of vocalization-crowing-which differs between the species in two components: its temporal acoustic pattern and its accompanying postural motor pattern. Previous work utilizing the quail-chick chimera technique demonstrated that the species-specific characteristics of the two crow components are determined by distinct brain structures: the midbrain confers the acoustic pattern, and the caudal hindbrain confers the postural pattern. Crowing is induced by androgens, acting directly on androgen receptors. As a strategy for identifying candidate neurons in the midbrain and caudal hindbrain that could be involved in crow production, we performed immunocytochemistry for androgen receptors in these brain regions in both species. We also investigated midbrain-to-hindbrain vocal-motor projections. In the midbrain, both species showed prominent androgen receptor immunoreactivity in the nucleus intercollicularis, as had been reported in previous studies. In the caudal hindbrain, we discovered characteristic species differences in the pattern of androgen receptor distribution. Chickens, but not quail, showed strong immunoreactivity in the tracheosyringeal division of the hypoglossal nucleus, whereas quail, but not chickens, possessed strong immunoreactivity in a region of the ventrolateral medulla. Some of these differences in hindbrain androgen receptor distribution may be related to the species differences in the postural component of crowing behavior. The results of the present study imply that the spatial distribution of receptor proteins can vary even between closely related species. Such variation in receptor distribution could underlie the evolution of species differences in behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call