Abstract

Soil phosphorus (P) partitioning could contribute to species diversity and structure in plant communities, but field-scale evidence for P partitioning remains scarce. We hypothesized that the presence of P partitioning could be inferred from statistical associations between the spatial distributions of plants and chemical forms of bioavailable soil P. We investigated this in a diverse tropical tree community on Barro Colorado Island, Panama. We quantified potentially bioavailable forms of soil P by extraction in 2 mM citric acid followed by treatment with phosphatase enzymes. We then linked these P forms to the distribution of 189 tree species in a 50 ha forest dynamics plot by testing species–P associations against null models of random dispersal. We found that 20% of tree species were significantly (α = 0.05) associated with the depletion of at least one soil organic P fraction, although around half of these associations might be false rejections of the null hypothesis due to type I error. Species in the Fabaceae (legumes), which are known to express high rates of phosphatase in their roots, were most frequently associated with soil P fractions. We interpret our findings as evidence of widespread P partitioning at the community scale, affecting a relatively small proportion of tree species in this moderately fertile forest. We predict that stronger evidence of partitioning will be found at sites with lower P availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.