Abstract

We have characterized the C−H stretching vibrations of hydrogenated graphene on gold substrates using vibrational sum-frequency generation (SFG) spectroscopy. These C−H stretches are red-shifted as compared to aliphatic C−H stretches, and SFG signal intensities of the C−H vibrational features increase with increasing hydrogen coverage. By comparison with density-functional theory (DFT) calculations, we conclude that hydrogen atoms covalently attach to the graphene lattice from above the graphene sheet; preferential binding motifs are dimers in the ortho and para positions. SFG spectroscopy is hence not only able to detect hydrogen atoms on graphene at sub-monolayer coverage but it can also serve to obtain relative information about the surface coverage, and in combination with DFT can reveal information about binding motifs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call