Abstract

Although the impact of bioremediation of PCB-contaminated sites on the indigenous microbial community is a key question for soil restoration, it remains poorly understood. Therefore, a small-scale bioremediation assay made of (a) a biostimulation treatment with carvone, soya lecithin and xylose and (b) two bioaugmentation treatments, one with a TSZ7 mixed culture and another with a Rhodococcus sp. Z6 pure strain was set up. Changes in the structure of the global soil microbial community and in the abundances of different taxonomic phyla were monitored using ribosomal intergenic spacer analysis (RISA) and real-time PCR. After an 18-month treatment, the structure of the bacterial community in the bioremediated soils was significantly different from that of the native soil. The shift observed in the bacterial community structure using RISA analysis was in accordance with the monitored changes in the abundances of 11 targeted phyla and classes. Actinobacteria, Bacteriodetes and α- and γ- Proteobacteria were more abundant under all three bioremediation treatments, with Actinobacteria representing the dominant phylum. Altogether, our results indicate that bioremediation of PCB-contaminated soil induces significant changes in the structure and abundance of the total microbial community, which must be addressed to implement bioremediation practices in order to restore soil functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call