Abstract

We present evidence indicating that rapid, self-sustained, high-temperature reactions play an important role in the formation of tetragonal MoSi2 during room-temperature high-energy ball milling of elemental powders. Such reactions appear to be ignited by mechanical impact in an intimate, fine-grained, Mo–Si physical mixture formed after an initial milling period. Under certain conditions, limited propagation of self-sustained reactions in these uncompacted powder mixtures renders the compound formation seemingly gradual in bulk-averaged analysis. It is suggested that this type of reaction is an important mechanism in the mechanical alloying of highly exothermic systems. Results are discussed in comparison with similar reactions we observed in ball-milled Al–Ni powders, with self-sustained combustion synthesis previously reported for Mo–Si powders, and with interfacial diffusional reactions in Mo–Si powders or thin-film diffusion couples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.