Abstract

We develop a model for a possible origin of hard very high energy spectra from a distant blazar. In the model, both the primary photons produced in the source and secondary photons produced outside the source contribute to the observed high energy $\gamma$-rays emission. That is, the primary photons are produced in the source through the synchrotron self-Compton (SSC) process, and the secondary photons are produced outside the source through high energy protons interaction with the background photons along the line of sight. We apply the model to a characteristic case was the very high energy (VHE) $\gamma$-ray emissions in distant blazar 1ES 1101-232. Assuming a suitable electron and proton spectra, we obtain excellent fits to observed spectra of distant blazar 1ES 1101-232. This indicated that the surprisingly low attenuation of high energy $\gamma$-rays, especially for the shape of the very high energy $\gamma$-rays tail of the observed spectra, can be explained by secondary $\gamma$-rays produced in interactions of cosmic-ray protons with background photons in the intergalactic space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.