Abstract

Viviparous, branching corals such as Seriatopora hystrix are expected to generate most recruits through asexual reproduction (fission or fragmentation) but are expected to use sexual reproduction to produce widely dispersed colonists. In this study, allozyme electrophoresis was used to test for variation in the relative contributions of sexual and asexual reproduction to recruitment and to assess the apparent scale of larval dispersal (gene flow) in the central Great Barrier Reef. Fifty-seven collections (within ≤ 25 m2 ) of fragments from sets of approximately 40 colonies were made (where possible) within each of five habitats on each of 12 reefs. These reefs, within the central region of the Great Barrier Reef, were separated by up to 90 km and included one inner-shelf continental island and groups of seven midshelf reefs and four outer-shelf reefs. Most collections contained a high level of multilocus genotypic diversity and hence showed little evidence of recruitment through fragmentation, although the majority of collections displayed large and consistent deficits of heterozygotes. Allele frequencies varied greatly among collections (FST = 0.43), and this variation was sufficient to explain two-thirds of observed deficiencies of heterozygotes via a Wahlund effect. A hierarchical assessment of FST values revealed that 45% of allelic variation occurred among reefs (FST = 0.20), and only 16% of variation within reefs was explained by variation among five major habitat types (FST = 0.05). A relatively small component of the total variation among samples was attributable to across-shelf variation among the groups of middle- and outer-shelf reefs (FST = 0.03); however, the outer-shelf reefs form a single UPGMA cluster separate from all but 4 of the other 43 collections. These data imply that widespread dispersal does occur but that the direction or magnitude of gene flow may be influenced by the along-shelf movement of major ocean currents and weather-dependent currents on or near reefs. Each reef, therefore, forms a partially isolated and highly subdivided population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.