Abstract

Abstract Intrinsic variability was searched for in arrival times of six gamma-ray bursts (GRBs) at high energies – between 30 MeV and 2 GeV – detected by the Fermi satellite’s Large Area Telescope (LAT). The GRBs were selected from the Fermi LAT catalog with preference for events with numerous photons, a strong initial pulse, and measured redshifts. Three long GRBs and three short GRBs were selected and tested. Two different variability-detection algorithms were deployed, one counting photons in pairs, and the other multiplying time gaps between photons. In both tests, a real GRB was compared to 1000 Monte-Carlo versions of itself smoothed over a wide range of different timescales. The minimum detected variability timescales for long bursts (GRB 080916C, GRB 090926A, GRB 131108A) was found to be (0.005, 10.0, 10.0) seconds for the photon pair test and (2.0, 20.0, 10.0) seconds for the time-gap multiplication test. Additionally, the minimum detected variability timescales for the short bursts (GRB 090510, GRB 140619B, GRB 160709A) was found to be (0.05, 0.01, 20.0) seconds for the photon pair test and (0.05, 0.01, 20.0) seconds for the gap multiplication test. Statistical uncertainties in these times are about a factor of 2. The durations of these variability timescales may be used to constrain the geometry, dynamics, speed, cosmological dispersion, Lorentz-invariance violations, weak equivalence principle violations, and GRB models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call