Abstract

We report C, Si, and S isotope measurements on 34 presolar silicon carbide grains of Type AB, characterized by 12C/13C < 10. Nitrogen, Mg-Al-, and Ca-Ti-isotopic compositions were measured on a subset of these grains. Three grains show large 32S excesses, a signature that has been previously observed for grains from supernovae (SNe). Enrichments in 32S may be due to contributions from the Si/S zone and the result of S molecule chemistry in still unmixed SN ejecta or due to incorporation of radioactive 32Si from C-rich explosive He shell ejecta. However, a SN origin remains unlikely for the three AB grains considered here, because of missing evidence for 44Ti, relatively low 26Al/27Al ratios (a few times 10–3), and radiogenic 32S along with low 12C/13C ratios. Instead, we show that born-again asymptotic giant branch (AGB) stars that have undergone a very-late thermal pulse (VLTP), known to have low 12C/13C ratios and enhanced abundances of the light s-process elements, can produce 32Si, which makes such stars attractive sources for AB grains with 32S excesses. This lends support to the proposal that at least some AB grains originate from born-again AGB stars, although uncertainties in the born-again AGB star models and possible variations of initial S-isotopic compositions in the parent stars of AB grains make it difficult to draw a definitive conclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.