Abstract
Acetyl-LDL stimulates acyl-CoA:cholesterol acyltransferase (ACAT) much more effectively than LDL in mouse peritoneal macrophages. Previous work with another potent ACAT stimulator, beta-VLDL, suggested that atherogenic lipoproteins may use internalization pathways distinct from that of LDL. Brief incubation of fluorescently labeled acetyl-LDL and LDL followed by a short chase period without lipoproteins was used to compare endocytic pathways. LDL was delivered rapidly to perinuclear vesicles, corresponding to late endosomes and lysosomes. A substantial fraction (> 40%) of acetyl-LDL was initially retained in the cell periphery, while the rest was rapidly delivered to late endosomes that also contained LDL. Fluorescence of peripheral 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI)-acetyl-LDL could be quenched by TNBS, indicating accessibility of the peripheral acetyl-LDL to the extracellular space. Quantification of fluorescence intensities demonstrated that > 40% of the cell-associated DiI-acetyl-LDL but only about 10% of DiI-LDL fluorescence was quenchable by TNBS after a 3-minute chase. Fucoidin can efficiently displace DiI-acetyl-LDL bound to cells at 0 degree C. DiI-acetyl-LDL in the TNBS-quenchable peripheral compartments, however, was resistant to fucoidin. Electron microscopy of colloidal gold-acetyl-LDL showed that acetyl-LDL on the cell surface was often associated with microvilli or ruffles. After clearance from the surface, the peripheral acetyl-LDL was also delivered to the late endosomes and lysosomes. These results indicate that a substantial portion of acetyl-LDL enters macrophages through a pathway that initially differs from that of LDL. This pathway involves a prolonged retention of acetyl-LDL on the plasma membrane. This surface retention may affect ACAT activation in macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, thrombosis, and vascular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.