Abstract

In many mammals, including rodents and humans, removal of one lung results in the compensatory growth of the remaining lung; however, the mechanism of compensatory lung growth is unknown. Here, we investigated the changes in morphology and phenotype of pleural cells after pneumonectomy. Between days 1 and 3 after pneumonectomy, cells expressing α-smooth muscle actin (SMA), a cytoplasmic marker of myofibroblasts, were significantly increased in the pleura compared to surgical controls (p < .01). Scanning electron microscopy of the pleural surface 3 days post-pneumonectomy demonstrated regions of the pleura with morphologic features consistent with epithelial-mesenchymal transition (EMT); namely, cells with disrupted intercellular junctions and an acquired mesenchymal (rounded and fusiform) morphotype. To detect the migration of the transitional pleural cells into the lung, a biotin tracer was used to label the pleural mesothelial cells at the time of surgery. By post-operative day 3, image cytometry of post-pneumonectomy subpleural alveoli demonstrated a 40-fold increase in biotin+ cells relative to pneumonectomy-plus-plombage controls (p < .01). Suggesting a similar origin in space and time, the distribution of cells expressing biotin, SMA, or vimentin demonstrated a strong spatial autocorrelation in the subpleural lung (p < .001). We conclude that post-pneumonectomy compensatory lung growth involves EMT with the migration of transitional mesothelial cells into subpleural alveoli.

Highlights

  • Lung regeneration occurs in a variety of adult mammals [1], including humans [2], after the surgical removal of one lung

  • We provide direct evidence that compensatory lung growth involves pleural epithelial-mesenchymal transition (EMT) with the migration of transitional mesothelial cells into subpleural alveoli

  • Microvilli were visible on both Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)(Fig 1B)

Read more

Summary

Introduction

Lung regeneration occurs in a variety of adult mammals [1], including humans [2], after the surgical removal of one lung (pneumonectomy). Advanced morphometric techniques have demonstrated an increase in the number of alveoli [5]. That post-pneumonectomy lung growth involves extensive remodeling of the lung microarchitecture [6,7]. Post-pneumonectomy lung growth is not associated with aggregates of proliferative cells; rather, lung growth is associated with an increase in septal thickness [6,7]. Early morphologic changes include a retraction of alveolar septa and an increase in alveolar duct diameter. Ysasi et al have suggested that alveolar growth involves a repartitioning of the dilated alveolar ducts [7]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.