Abstract
Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules. Symbiotic and growth defects of the pst mutant can be effectively restored by knocking out PhoB, the transcriptional repressor of pit. The pst homologs of representative rhizobia were actively transcribed in bacteroids without terminal differentiation in nodules of diverse legumes (soybean, pigeonpea, cowpea, common bean, and Sophora flavescens) but exhibited a basal expression level in terminally differentiated bacteroids (alfalfa, pea, and peanut). Rhizobium leguminosarum bv. viciae Rlv3841 undergoes characteristic nonterminal and terminal differentiations in nodules of S. flavescens and pea, respectively. The pst mutant of Rlv3841 showed impaired adaptation to the nodule environment of S. flavescens but was indistinguishable from the wild-type strain in pea nodules. Taken together, root nodule rhizobia can be either phosphate limited or nonlimited regarding the rhizobial differentiation fate, which is a host-dependent feature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.