Abstract

The craters resulting from high-irradiance (1×109–1×1011 W/cm2) single-pulse laser ablation of single-crystal silicon show a dramatic increase in volume at a threshold irradiance of 2.2×1010 W/CM2. Time-resolved shadowgraph images show ejection of large particulates from the sample above this threshold irradiance, with a time delay ∼300 ns. A numerical model was used to estimate the thickness of a superheated layer near the critical state. Considering the transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency), the calculated thickness of the superheated layer at a delay time of 200–300 ns agreed with the measured crater depths. This agreement suggests that induced transparency promotes the formation of a deep superheated layer, and explosive boiling within this layer leads to particulate ejection from the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.