Abstract

Accurate modeling of the optical properties of atmospheric mineral dust is important for climate modeling calculations and remote sensing data retrievals. Atmospheric mineral dust in the accumulation mode size range is often rich in silicate clays including kaolinite and illite. This is important because dust optical properties depend on particle shape, and fundamental clay particles are known to consist of very thin flakes.In this combined laboratory and modeling study, we investigate the optical properties (IR extinction and visible light scattering) of two samples of silicate clay dust aerosol, kaolinite and illite. Particle size distributions are measured simultaneously with the optical properties. T-Matrix theory based simulations using a spheroidal particle approximation are compared with experimental data. We find that the full range of visible scattering and polarimetry data, and IR extinction profiles are not well fit by assuming a single size–shape distribution for the aerosol. In contrast, a simple bimodal distribution model that treats small particles (fundamental clay flakes) in the distribution as highly eccentric oblate spheroids with axial ratio parameters ≥5, but approximates larger particles by a more moderate shape distribution with axial ratio parameters <3, gives better agreement with the full range of experimental data. These conclusions are consistent with mineralogical data on the dimensions of fundamental clay particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call