Abstract

We report strong short period (0.5–1.2 Hz) precursors to P′P′df at podal to short distances (0–50°) with advance time around 60s. From FK analysis, we find that the precursors at epicentral distance of ∼35° arrive along back‐azimuth about +/−120° off the great circle paths (asymmetrical path) with slowness between 2–4 sec/deg, arguing against propagation path in the inner core. Polarization analysis also supports wave propagation in the outer core. Timing and shape of the precursors' waveform envelopes are well matched with synthetic envelopes taking into account the scattering from the rough free surface and volumetric heterogeneities inside the Earth along asymmetrical propagation path. Therefore the precursors are very probably generated with asymmetrical scattering mechanism. This interpretation does not require extra discontinuities or a layer of strong small scale heterogeneities in the upper mantle, which are inferred from P′P′ precursors when only symmetrical scattering is assumed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call