Abstract

The mechanism of disinhibition produced by opioid peptides was studied using intracellular recording in area CA1 of rat hippocampal slices. The μ-selective opioid peptide [ d-Ala 2,N- Me-Phe 4, Gly-ol 5]- enkephalin (DAGO) reversibly depressed directly-activated, monosynaptic inhibitory postsynaptic potentials (IPSPs) evoked in the presence of the excitatory amino acid receptor antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and d,l-2-amino-5-phosphonovalerate (APV) in a naloxone-sensitive manner. Depression of monosynaptic inhibitory postsynaptic potentials (IPSPs) by DAGO was not prevented by 1–2 mM Ba 2+. DAGO reversibly depressed monosynaptic IPSPs when applied locally close to the recording site, but was ineffective when applied close to the stimulating site in stratum radiatum. These results suggest that DAGO disinhibits pyramidal neurons in area CA1 of the rat hippocampus by activating μ opiate receptors located on the terminals of inhibitory neurons, and by a Ba 2+-insensitive mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.