Abstract

Membrane potentials and intracellular pH were measured on rat renal proximal tubular cells in vivo to test whether sodium-bicarbonate cotransport across the peritubular cell membrane accepts OH- (or H+ in opposite direction) or whether it requires the CO2, HCO3-, CO3= buffer to operate. It was found that step changes of peritubular pH in nominally HCO3(-)-free and CO2-free solutions produced qualitatively similar initial potential responses and cell pH responses as changes in peritubular HCO3- concentrations. These responses, however, were considerably smaller and they were neither reduced in Na+-free solutions nor inhibited by the stilbene derivative SITS which is known to block Na+ (HCO3-)n cotransport completely. We conclude that the cotransporter requires the CO2, HCO3-, CO3= buffer for its physiological operation but that high rates of OH- or H+ can also be transferred across the peritubular cell membrane in HCO3(-)-free solutions, probably through a separate transport system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.