Abstract
Previously, we demonstrated conjugal transfer of a specially constructed shuttle vector, pRDB5, from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella (Bacteroides) ruminicola B(1)4. We have now shown that naturally occurring gene transfer elements in Bacteroides species and Prevotella ruminicola can also be transferred between these two genera. A self-transmissible chromosomal element originally found in a clinical isolate of Bacteroides fragilis (Tcr Emr 12256) was transferred from B. uniformis 0061 to P. ruminicola B(1)4 and from P. ruminicola B(1)4 back to B. uniformis or to another human colonic species, Bacteroides thetaiotaomicron. Similarly, a conjugative plasmid (pRRI4) originally found in P. ruminicola 223 was transferred from P. ruminicola B(1)4 to B. uniformis or B. thetaiotaomicron. pRRI4 could be transferred from the colonic Bacteroides species only if the donor strain contained the Tcr Emr 12256 element in its chromosome. These results show that transfer of naturally occurring elements can be demonstrated under laboratory conditions. Evidence that such transfers may actually have occurred in nature came from our finding that the tetracycline resistance (Tcr) gene on the P. ruminicola plasmid pRRI4 hybridized on high-stringency Southern blots with the Tcr gene found on the Bacteroides Tcr elements. The presence of the same gene in such distantly related genera of bacteria is most likely to have occurred as a result of horizontal transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.