Abstract

Acrosin (acrosomal proteinase; EC 3.4.21.10) is a sperm-specific serine proteinase implicated in sperm penetration of the mammalian oocyte. Previously, we had shown that human acrosin, unlike human trypsin (EC 3.4.21.4), was inhibited by β- d-fructose and related carbohydrates. The present study was undertaken to more fully elucidate the mechanism of action of fructose as an acrosin inhibitor, and to further differentiate the kinetic properties of acrosin from those of trypsin. Fructose produced a complex pattern of inhibition. At relatively low concentrations (10–60 m m), fructose acted as a competitive inhibitor with an apparent inhibition constant of 13 m m. In contrast, at high concentrations (80–320 m m), fructose behaved as a noncompetitive inhibitor, with an apparent inhibition constant of 205 m m. A Hill plot of enzyme activity as a function of fructose concentration suggested only a single binding site for fructose (slope = −0.90). The pattern of inhibition is not consistent with an enzyme containing only a single catalytic site, based either upon steady-state or rapid equilibrium assumptions; however, good agreement between observed and simulated data were obtained based upon the assumption of two catalytic sites with equal or similar binding and catalytic constants. The data suggested that fructose interacts with a single binding site ( K i = 8 mM) which alters both catalytic sites to produce an enzyme species having a higher apparent Michaelis constant and lower k cat as compared to the uninhibited enzyme. Fructose had no effect upon the rate of acrosin inactivation by either diisopropylfluorophosphate or tosyl-lysine-chloromethylketone, suggesting that neither substrate binding nor acylation were altered by this agent. The above data indicate substantial differences between the catalytic properties of human acrosin and those of trypsin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.