Abstract

Olfactory receptor neurons employ a diversity of signaling mechanisms for transducing and encoding odorant information. The simultaneous activation of subsets of receptor neurons provides a complex pattern of activation in the olfactory bulb that allows for the rapid discrimination of odorant mixtures. While some transduction elements are conserved among many species, some species-specificity occurs in certain features that may relate to their particular physiology and ecological niche. However, studies of olfactory transduction have been limited to a relatively small number of vertebrate and invertebrate species. To better understand the diversity and evolution of olfactory transduction mechanisms, we studied stimulus-elicited calcium fluxes in olfactory neurons from a previously unstudied mammalian species, the domestic cat. Isolated cells from cat olfactory epithelium were stimulated with odorant mixtures and biochemical agents, and cell responses were measured with calcium imaging techniques. Odorants elicited either increases or decreases in intracellular calcium; odorant-induced calcium increases were mediated either by calcium fluxes through the cell membrane or by mobilization of intracellular stores. Individual cells could employ multiple signaling mechanisms to mediate responses to different odorants. The physiological features of these olfactory neurons suggest greater complexity than previously recognized in the role of peripheral neurons in encoding complex odor stimuli. The investigation of novel and unstudied species is important for understanding the mechanisms of odorant signaling that apply to the olfactory system in general and suggests both broadly conserved and species-specific evolutionary adaptations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call