Abstract
Atlantic Forest Inselbergs (AFI) and Campos Rupestres (CR) are mountains and highlands of eastern South America, relatively poorly studied and highly threatened, which display extraordinary levels of plant endemism and richness. In spite of their geographical and environmental differences, the origin of the flora of CR and AFI are likely linked to each other, because several plant clades are distributed across both ecosystems. In addition to these studies, little has been investigated about the historical biogeographical connections between AFI and CR and most evolutionary studies are restricted to CR. Barbacenia (Velloziaceae) is widely spread and nearly endemic to the AFI and CR outcrops and thus represent an ideal system to study the biogeographical connections between CR and AFI. Besides, given the remarkable diversity of Barbacenia in CR compared to AFI, it appears that different factors were important drivers in the diversification of Barbacenia lineages, likely leading to different patterns of morphological diversification. Here, we integrate phylogenetic, biogeographic and morphological approaches to: (i) address whether AFI species of Barbacenia are monophyletic and thus a single colonization of AFI can be inferred; (ii) understand the timing and geographical origin of CR and AFI clades; (iii) compare morphological diversity between Barbacenia from AFI and CR under the hypothesis that these two systems have experienced similar levels of morphological diversification during their evolutionary history. To this end, we presented a phylogeny inferred using plastid (atpB-rbcL, trnH-psbA and trnL-trnF) and nuclear (ITS) markers and a complete sampling of AFI Barbacenia, estimated divergence times, reconstructed the ancestral areas of Barbacenia clades and compared their morphological diversity based on a dataset of 16 characters. Our results provided evidence for a diversification of Barbacenia from the Middle Miocene to Pleistocene, as suggested in previous studies. We suggest that stepping-stone dispersal across mountaintops in interplay with paleovegetation dynamics during the global Miocene cooling and Pleistocene climatic oscillations may played an important role in the range expansion of modern AFI Barbacenia lineages. Finally, our results also showed a significant differences in morphological diversity between AFI and CR clades, suggesting a long-term morphological stasis in AFI species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.