Abstract

Abstract. Dissimilatory iron reduction is probably one of the oldest types of metabolisms that still participates in important biogeochemical cycles, such as those of carbon and sulfur. It is one of the more energetically favorable anaerobic microbial respiration processes and is usually coupled to the oxidation of organic matter. Traditionally this process is thought to be limited to the shallow part of the sedimentary column in most aquatic systems. However, iron reduction has also been observed in the methanic zone of many marine and freshwater sediments, well below its expected zone and occasionally accompanied by decreases in methane, suggesting a link between the iron and the methane cycles. Nevertheless, the mechanistic nature of this link (competition, redox or other) has yet to be established and has not been studied in oligotrophic shallow marine sediments. In this study we present combined geochemical and molecular evidences for microbial iron reduction in the methanic zone of the oligotrophic southeastern (SE) Mediterranean continental shelf. Geochemical porewater profiles indicate iron reduction in two zones, the uppermost part of the sediment, and the deeper zone, in the layer of high methane concentration. Results from a slurry incubation experiment indicate that the deep methanic iron reduction is microbially mediated. The sedimentary profiles of microbial abundance and quantitative PCR (qPCR) of the mcrA gene, together with Spearman correlation between the microbial data and Fe(II) concentrations in the porewater, suggest types of potential microorganisms that may be involved in the iron reduction via several potential pathways: H2 or organic matter oxidation, an active sulfur cycle, or iron-driven anaerobic oxidation of methane. We suggest that significant upward migration of methane in the sedimentary column and its oxidation by sulfate may fuel the microbial activity in the sulfate methane transition zone (SMTZ). The biomass created by this microbial activity can be used by the iron reducers below, in the methanic zone of the sediments of the SE Mediterranean.

Highlights

  • Iron (Fe) is the fourth most abundant element in the Earth’s crust

  • Sulfide concentrations were below the detection limit in all cores, indicating that the total sulfur is mostly sulfate

  • Station SG-1 is located at the center of the gas front area, while Stations PC-3 and PC-5 are located at the edges, and methane related processes were more intensive at Station SG-1

Read more

Summary

Introduction

Iron (Fe) is the fourth most abundant element in the Earth’s crust. It appears as elemental Fe, Fe(II) and Fe(III) and has an important geobiological role in natural systems (e.g., Roden, 2006). Dissimilatory microbial iron reduction may be one of the first evolutionary metabolisms and plays a key role in the reductive dissolution of Fe(III) minerals in the natural environment (Lovley and Phillips, 1986, 1988; Lovley et al, 1987; Lovley, 1997; Weber et al, 2006) and in the mineralization of organic matter in freshwater sediments (Roden and Wetzel, 2002). Vigderovich et al.: Evidence for microbial iron reduction in methanic sediments

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call