Abstract
Tides are universal and affect spatially distributed systems, ranging from planetary to galactic scales. In the Earth–Moon system, effects caused by lunar tides were reported in the Earth’s crust, oceans, neutral gas-dominated atmosphere (including the ionosphere) and near-ground geomagnetic field. However, whether a lunar tide effect exists in the plasma-dominated regions has not been explored yet. Here we show evidence of a lunar tide-induced signal in the plasmasphere, the inner region of the magnetosphere, which is filled with cold plasma. We obtain these results by analysing variations in the plasmasphere’s boundary location over the past four decades from multisatellite observations. The signal possesses distinct diurnal (and monthly) periodicities, which are different from the semidiurnal (and semimonthly) variations dominant in the previously observed lunar tide effects in other regions. These results demonstrate the importance of lunar tidal effects in plasma-dominated regions, influencing understanding of the coupling between the Moon, atmosphere and magnetosphere system through gravity and electromagnetic forces. Furthermore, these findings may have implications for tidal interactions in other two-body celestial systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.