Abstract

Auditory function declines with age, as evidenced by communication difficulties in challenging listening environments for older adults. Declining auditory function may arise, in part, from an age-related loss and/or inactivity of low-spontaneous-rate (SR) auditory nerve (AN) fibers, a subgroup of neurons important for suprathreshold processing. Compared to high-SR fibers, low-SR fibers take longer to recover from prior stimulation. Taking advantage of this difference, the forward-masked recovery function paradigm estimates the relative proportions of low- and high-SR fibers in the AN by quantifying the time needed for AN responses to recover from prior stimulation (ΔTrecovery). Due to the slower recovery of low-SR fibers, ANs that need more time to fully recover (longer ΔTrecovery) are estimated to have a larger proportion of low-SR fibers than ANs that need less time (shorter ΔTrecovery). To test the hypothesis that low-SR fiber activity is reduced in older humans, the current study assessed recovery functions in 32 older and 16 younger adults using the compound action potential. Results show that ΔTrecovery is shorter for older adults than for younger adults, consistent with a theorized age-related loss and/or inactivity of low-SR fibers. ΔTrecovery did not differ between individuals with and without a prior history of noise exposure as assessed by self-report. This study is the first to successfully assess forward-masked recovery functions in both younger and older adults and provides important insights into the structural and functional changes occurring in the AN with increasing age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call