Abstract

The ongoing quest for defect-free thin films systems that are apt for being used as spin filtering materials for spintronic applications did yet not deliver satisfying results regarding materials that would be up to the pertinent requirements. Using soft x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at the Co-L2,3 and Fe-L2,3 absorption edges, we have investigated the magnetic properties of a nanostructured thin film with self-assembled CoFe2O4 nanopillars embedded in BiFeO3, the latter being a well-known system for its combined multiferroic and spintronic properties. In this BiFeO3-CoFe2O4 heterostructure we observed a significant XMCD signal at the Co-L2,3 edges which turns out to be the largest among the presently reported for Co ions at room temperature. A quantitative analysis of the Co-L2,3 spectra unveils that such a large Co-L2,3 XMCD signal stems from the impeccable fully inverted spinel ordering of the A- and B-sites in antiphase-free CoFe2O4 nanopillars. This twofold perfect CoFe2O4 ordering feature yields an unprecedented optimization within a multifunctional ferrimagnetic-multiferroic thin film system highly relevant for spintronic applications, also resulting in an equally unprecedented macroscopic magnetic moment for such material as compared to its pure form as well as to technologically relevant thin film compound systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.