Abstract
We studied hyperosmolarity-induced changes in cell volume and cytoplasmic pH in PS120 cells expressing Na(+)/H(+) exchanger (NHE) isoforms and their mutants. Change in cell volume was estimated by measuring change in cell height by means of confocal microscopy. Regulatory volume increase (RVI) and cytoplasmic alkalinization were observed in cells expressing NHE1 but not in cells expressing NHE2 or NHE3. Studies using chimeric exchangers revealed that the membrane domain of the exchanger is responsible for the difference in volume sensitivity between NHE1 and NHE2. Although deletion or point mutation within the first extracellular loop of NHE1 did not affect RVI and alkalinization, point mutations within the corresponding region of NHE2, particularly a region containing aa 41-53, as well as replacement of the N-terminus of NHE2 with the corresponding region of NHE1, rendered NHE2 responsive to the activating effect of cell shrinkage. Thus, the membrane domain plays an important role in the response of the exchanger to cell shrinkage. The data suggest that the putative first extracellular loop of NHE2, but not that of NHE1, may exert an inhibitory influence on hyperosmolarity-induced activation of the exchanger and thereby block RVI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.