Abstract

AbstractA homologous series of donor–π–acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye‐X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light‐induced charge‐separated state, TiO2(e−)/Dye‐X+, with iodide in solution. Transient absorption spectroscopy showed progressively faster reactivity towards nucleophilic iodide with more polarizable halogen substituents: Dye‐F < Dye‐Cl < Dye‐Br < Dye‐I. Given that all other structural and electronic properties for the series are held at parity, with the exception of an increasingly larger electropositive σ‐hole on the heavier halogens, the differences in dye regeneration kinetics for Dye‐Cl, Dye‐Br, and Dye‐I are ascribed to the extent of halogen bonding with the nucleophilic solution species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.