Abstract

The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos-c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call