Abstract

The key processes responsible for the rise in groundwater salinization in the Mio–Pliocene aquifer system of Sousse (Tunisia, eastern coastline) were identified through a multidisciplinary approach based on the use of geochemical, stable (2H, 13C, 18O and 37Cl) and radioactive (3H and 14C) isotope methods. In the study region, the mineralization of groundwaters is related to water–rock interaction ascribed to the dissolution of minerals in evaporite rocks, as well as to saltwater intrusion. Both processes explain the development of groundwaters in which Cl and Na dominantly determine the groundwater quality deterioration state. The isotopic and geochemical signatures of the studied groundwaters are clearly explained by the (i) occurrence of saline basins (sebkhas adjacent to the study region), (ii) type of rocks found below the ground surface, and (iii) cation exchange between clays and groundwaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.