Abstract

AbstractGravity wave (GW) signatures have been derived from temperature profiles observed by Cassini/Ultraviolet Imaging Spectrograph in the Saturnian thermosphere during the Grand Finale campaign. They demonstrate upward propagation of GW packets, their saturation, and breaking. We determined wave amplitudes, potential energy, and momentum fluxes and estimated the associated wave drag imposed by dissipating harmonics on the ambient flow. The data set of 18 profiles covers the middle and high latitudes of both hemispheres, which allows for exploring the global impact of waves. The diagnostics based on the Transformed Eulerian Mean and modified geostrophy approach reveal that the GW drag induces an equatorward flow in both hemispheres, facilitating transport of heat away from the auroral zones and redistributing energy across latitudes. Like all the outer planets, Saturn's thermosphere is hundreds of degrees hotter than what follows from radiative balance and these results help to explain the observed temperatures at all latitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.