Abstract

Due to its proximity to the axon initial segment (AIS), the paranode of the first myelin segment can influence the threshold for action potentials and how a neuron participates in a neuronal circuit. Using serial section electron microscopy, we examined its three-dimensional (3D) organization in the ventral horn of the mouse spinal cord. The myelin loops of postnatal day 18 mice resemble those at the node of Ranvier. However, in 3-month-old mice, 13 of 22 para-AIS showed 4 types of alteration: (A) A cytoplasmic foot process, with ultrastructural characteristics of an astrocyte, was interposed between the axolemma and the myelin loops. (B) A thin extension of the inner tongue was present between the foot process and axolemma. (C) The foot process was absent. The inner tongue extension was a broad lamella from which a thin extension reached beyond the loops and spiraled around axon. (D) One set of loops was adjacent to the axon, and another was further back and underlain by compact myelin. We suggest that (A)-(C) are steps in a progression toward (D). In this progression, a glial process displaces the original loops, the inner tongue reactivates and extends beneath the foot process, then wraps around the axon to form a new set of loops. This is the first study of the 3D organization of myelin at the AIS and provides evidence for glia-mediated age-dependent remodeling at this critical region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call