Abstract

The ability of gold to act as proton acceptor and participate in hydrogen bonding remains an open question. Here, we report the synthesis and characterization of cationic gold(I) complexes featuring ditopic phosphine-ammonium (P,NH+) ligands. In addition to the presence of short Au∙∙∙H contacts in the solid state, the presence of Au∙∙∙H-N hydrogen bonds was inferred by NMR and IR spectroscopies. The bonding situation was extensively analyzed computationally. All features were consistent with the presence of three-center four-electron attractive interactions combining electrostatic and orbital components. The role of relativistic effects was examined, and the analysis is extended to other recently described gold(I) complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call