Abstract

AbstractCorrosion, water radiolysis and microbial degradation will result in the generation of gas within repositories designed for the geological disposal of high-level radioactive waste. It is therefore crucial in the design of such facilities that the relevant mechanisms allowing gas migration through repository materials, both engineered barriers and clay-based candidate host rocks, are correctly identified. In Belgium, the Boom Clay represents a candidate host material for which the advective gas breakthrough characteristics and transport properties have been extensively tested and are well defined by numerous studies. The Boom Clay displays a significant capacity for self-sealing and both laboratory and field tests indicate that advective gas transport occurs not by visco-capillary flow, but instead through the formation of pressure-induced dilatant pathways. In this study, we present results from a gas injection test designed to demonstrate the presence of these features by injecting nanoparticulate tracers with helium gas into a sample of Boom Clay. The results provide conclusive evidence for the formation of transient, dilatant gas pathways within a candidate clay-based host rock. This technique provides a novel diagnostic tool for the identification of processes governing multi-phase flow, supporting robust long-term assessments of repository performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.