Abstract

Frog aortic tissue exhibits plasma membrane electron transport (PMET) owing to its ability to reduce ferricyanide even in the presence of mitochondrial poisons, such as cyanide and azide. Exposure to hypotonic solution (108 mOsmol/kg H2O) enhanced the reduction of ferricyanide in excised aortic tissue of frog. Increment in ferricyanide reductase activity was also brought about by the presence of homocysteine (100 microM dissolved in isotonic frog Ringer solution), a redox active compound and a potent modulator of PMET. Two plasma-membrane-bound channels, the volume-regulated anion channel (VRAC) and the voltage-dependent anion channel (VDAC), are involved in the response to hypotonic stress. The presence of VRAC and VDAC antagonists-tamoxifen, glibenclamide, fluoxetine and verapamil, and 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), respectively-inhibited this enhanced activity brought about by either hypotonic stress or homocysteine. The blockers do not affect the ferricyanide reductase activity under isotonic conditions. Taken together, these findings indicate a functional interaction of the three plasma membrane proteins, namely, ferricyanide reductase (PMET), VDAC and VRAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call