Abstract

Molecular data from the cytochrome c oxidase subunit I (cox1) mitochondrial DNA gene and the second internal transcribed spacer (ITS2) nuclear rDNA region were used to test the current morphologically-based taxonomic hypothesis regarding species of Monorchiidae (Hurleytrematoides) from chaetodontid and tetraodontid fishes from six sites in the tropical Indo-West Pacific (TIWP): Heron and Lizard Islands off the Great Barrier Reef (GBR, Australia), Moorea (French Polynesia), New Caledonia, Ningaloo Reef (Australia) and Palau. The 16 morphospecies analysed differed from each other by a minimum of 55bp (9.1%) over the mitochondrial cox1 and 8bp (1.6%) over the ITS2 DNA regions. For two species, Hurleytrematoides loi and Hurleytrematoides sasali, specimens from the same host species in sympatry differed at levels comparable to those between pairs of distinct morphospecies for both cox1 and ITS2 sequences. We take this as evidence of the presence of combinations of cryptic species; however, we do not propose new species for these taxa because we lack identified morphological voucher specimens. For seven species, Hurleytrematoides coronatum, Hurleytrematoides deblocki, Hurleytrematoides faliexae, H. loi, Hurleytrematoides morandi, H. sasali and Hurleytrematoides sp. A, samples from some combinations of localities had base pair differences that were equal to or greater than differences between some pairs of distinct morphospecies for one or both cox1 and ITS2 sequences. For three species, H. coronatum, H. loi and H. morandi, one haplotype differed from every other haplotype by more than the morphospecies benchmark. In these cases morphological specimens could not be distinguished by morphology. These data suggest extensive cryptic richness in this genus. For the present we refrain from dividing any of the morphospecies. This is because there is a continuum of levels of intra- and interspecific genetic variation in this system, so that distinguishing the two would be largely arbitrary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call